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Abstract

I propose and implement a method for seeing the typographic
forms in the topography of our physical worlds. I use image-
based handwriting datasets to train neural networks which
detect typographic glyphs in a satellite image, and I imple-
ment a pipeline for preparing these forms for use in a digi-
tized font format. Thus far, I’ve generated several completed,
vectorized fonts as well as a system for creating an infinite
number of fonts from satellite imagery. This project serves
to be at the fringe of computer science research as mimicked
in this paper’s writing style and structure.
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Introduction

The word geography stems from combining the Greek
words gē—earth—and graphia—writing. The Topography
Typography project serves to read and make legible land’s
writing. This project is a work in progress to be reframed
and reconsidered; in this paper, I look through philosophi-
cal and technical lenses to understand the creation of these
fonts. Let’s first step through Topography Typography as
the journey has played out so far.

The Boot-Shaped Lake

I don’t need entertainment on a plane as long as I have the
window seat. At dawn or dusk, over sea or land, in rain or
shine, I’ll peer out the window and wonder about the forms
and life below.

In November 2017, I was flying home to Naples, Florida for
Thanksgiving Break, peering out from my window seat at
the ever-changing landscape. Halfway through the flight, I
settled my eyes on a large body of water in the shape of a
cowboy boot with spurs. See Figure 1. Slowly, we flew past
the lake. Even out of eyeshot, the lake’s form lingered in
my brain. I could not help but continue to sit, transfixed.
During that fall semester at Princeton, I was taking a Visual
Arts class titled T-y-p-o-g-r-a-p-h-y taught by David Rein-
furt. In my coursework, I was thinking about and working
with the deconstruction of letterforms. Sitting in my win-
dow seat, I decided I wanted the ability to find typography
in the land. I wanted to better investigate spatial structures
and work with the striking forms of arbitrary, aerial land-
scape. I wrote this idea in my journal, returning to it for
independent work starting in my undergraduate junior year.

Initial Font Creation

Over the course of my junior spring at Princeton, I began
creating this glyph detection algorithm. I iterated on places
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Figure 1: Satellite imagery of a boot-shaped lake outside
Sneads Ferry in North Carolina. Sourced from USGS Land-
sat imagery.

dear to me and my loved ones, places connected to my place-
ment on Earth including my hometown (NAPLES) and my
college town (PRINCETON). See Figure 2.

Spring turned into summer, and while at my internship, I
created the SEATTLE font on site. In a work presentation,
I used the SEATTLE font for the type, and my co-worker
commented that he knew the exact location in downtown
Seattle where I’d sourced the font’s P character. See Fig-
ure 3. I became more interested in the field work aspect of
this project, in visiting the locations of characters to under-
stand the source of the indexical marks I was recording.

Peruvian Geoglyphs

At the end of that same summer, I found myself backpacking
alone in Peru, traveling from the country’s southwest deserts
to its northeastern rainforests. I was traveling in a space I’d
only read and heard about, having sourced my visual under-
standing of the land from aerial satellite imagery stored in
Google’s omnipotent Cloud.

Nazca Lines

Finding myself in the Nazca deserts, I visited the town’s
world-renowned geoglyphs. The term geoglyph refers to a
grounded land design created from natural media like stone,
water, sand, trees, or dirt. In imagining the Nazca Lines,
think giant crop circles but preserved in the arid Peruvian
desert sands for over two thousand years.
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Figure 2: Names of the locations I used in initial trials as
typeset in their respective fonts with original rendering.

This time in the window seat of a twelve-person plane, I set-
tled into the continual rolling of the aircraft as the pilot gave
passengers two opportunities to see the Lines, alternating to
favor the right and left side windows. In ninety minutes,
we flew over geoglyphs depicting twelve outlined graphics
including la Ballena (the Whale), la Araña (the Spider), el
Árbol (the Tree), and el Colibrí (the Hummingbird), the
last of which we find on Peru’s Nuevo Sol coinage. The
sands were riddled with these surprising patterns, creating a
graphic network in the otherwise uniform sands below. See
Figure 4. Upon safe arrival back to the ground of the Pisco
airport, I traveled to see the Candelabra geoglyph etched
in the sands of the Paracas coast. Viewed from the coastal
waters, the Candelabra loomed over me, graphically laying
claim to the red cliffside. See Figure 5.

Today’s anthropologists and scientists cannot agree on the
creation methods behind these geoglyphs in Nazca and Para-
cas. Some think the lines were created by pressing down rope
into the ground while others insist the Nazca people dragged
a stick through the sand. Creation stories of the 1960s in-
corporated aliens and ancient astronauts. We too can only
guess about the reasons for creating these grounded graphics;
some propose the lines were created for rituals performed to
improve chances of rain and crop fertility, while others pro-
pose origins relating to astronomy, calendar organization,
and landmarking. [Golomb 2018]

Aboard a River Cargo Boat

In the opposite corner of Peru, I had another encounter with
grounded glyphs when I spent five days aboard a cargo boat.
I found myself traveling from Yurimaguas, a quiet port town,
to Iquitos, the largest city in the world not accessible by road
and only reached by river or air. Our ship carried compost
accelerator, potatoes, plantains, mattresses, and chickens—
all for safe transport to Iquitos along el Marañón, a tributary
to the Amazon River. See Figure 6. Around seventy other
passengers boarded with me in Yurimaguas, and we set up
our hammocks in parallel on the ship’s middle, open-air deck.

Figure 3: A type sample of the letterforms P and p in
SEATTLE, reminiscent of downtown Seattle’s street plan.

Along the journey, I passed the time either reading the first
edition of The Serving Library which regards time generally
and libraries specifically or staring out over the ship’s railing,
entranced by the continually changing river banks. Over
those long days aboard, I became acquainted with a group
of passengers—a mix of backpackers, locals, and crew. With
these folks, I started up a game to guess the letterform along
which we were traveling. Over the course of an hour or so
we would try to guess the letterforms which our captain had
been maneuvering. I’d be swinging back and forth in my
hammock, reading or sleeping or thinking, when a friendly
face would walk by and comment, “Pienso que este es un S,
no?” I’d nod or counter with “No, es un Z.”

These cursive river glyphs fluidly flowed into one another; for
me, it was unclear when a glyph would appropriately stop
or start. Only with the waking from a nap or the sudden
jolt of the boat nudging off a marooning moment on a sand
dune would I be able to take a refreshing moment to reorient
my internal typography.

This field work in Peru led me to focus on depth in this To-
pography Typography project. With these open questions
about context from the Nazca Lines and this absurd time I’d
spent marinating in el Marañón’s glyphs, I was far less con-
cerned with how many fonts I could accumulate—on which
I’d focused that first spring when I’d cranking out over a
hundred iterations—and far more interested in the stories
and contexts behind the resulting sets of glyphs. I came
into my undergraduate senior year with this lens of focusing
on understanding my subject.

Goal

The goal of this project is to create a system for generat-
ing typographic glyphs from a location’s topography. Given
satellite imagery, I want to algorithmically find letters, dig-
its, and punctuation in the image. As a final result, I want
the ability to type with these forms in a legible, complete
typeface and understand the context behind these glyphs.
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Figure 4: Photo taken over el Mono (the Monkey) geoglyph
in the collection of Nazca Lines in Nazca, Peru. August
2018. Taken with my phone camera.

Related Work

Next time you find yourself on the search engine of your
choice, spend a couple minutes looking at search results
for pareidolia. You’ll find an incredible visual collection,
mostly of faces where there is no living creature. This psy-
chological phenomenon describes the ability to observe pat-
terns in random data. We see pareidolia manifesting in the
sightings of faces or common objects in impossible environ-
ments like the prints from Hermann Rorschach’s inkblot test
and the “Face on Mars” photograph imaged by Viking 1 as
seen in Figure 7. [Phillips 2001]
In 2004 in my home state of Florida, Diana Duyser sold on
eBay for $28,000 a ten-year-old grilled-cheese sandwich with
the image of the Virgin Mary seared into the bread:

Diana Duyser made the sandwich with white bread
from Publix and Land O’Lakes American cheese
in 1994. She took a bite, then looked down and
saw the Virgin Mary staring up at her. Indeed, the
image of a woman could be perceived in the charred
bread, but it could have been a barroom portrait as
much as the mother of G-d. [Nolin 2015]

People today find entertainment in this phenomenon, spot-
ting images of rabbits in the sky while cloud gazing or find-
ing dogs in a plate of spaghetti while experimenting with
Google’s DeepDream algorithm which incorrectly detects
and then exaggerates zoomorphic features in a given im-
age. [Mordvintsev et al. 2015; Russon 2015]

Paul Elliman’s Found Font

Pareidolia is central to the life work of typographer, graphic
designer, and artist Paul Elliman who situates himself
at the cross-section of typography and found objects. In
1995, Elliman began curating his typeface Found Font (also

Figure 5: Photo taken of the Candelabra geoglyph from the
perspective of a boat off the coast of Paracas, Peru. August
2018. Taken with my phone camera.

Figure 6: Satellite imagery of the cursive river forms of
el Marañón, flowing from Yurimaguas (bottom left) into the
Amazon River and toward Iquitos (top right). Sourced from
USGS Landsat imagery.

known as Bits), a system of letters created from elements and
castoffs of industrial production. As displayed in MoMA’s
Ecstatic Alphabets / Heaps of Language exhibit, the found
letterforms comprise of zip ties, scissor handles, and hoop
earrings, amongst other objects. See one iteration of this
font in Figure 8. [Reinfurt et al. 2012; Wooldrage 2017]

Elliman’s work dissects language’s role in the world. Found
Font addresses the human want to map outward environ-
ments to easily digestible understandings. By mapping lan-
guage onto these objects, Elliman understands the objects
in his environment via a typographic lens.

The Aerial Bold Project

Benedikt Groß and Joey Lee conducted related research in
the field of letterform detection from satellite imagery. Af-
ter making their Big Atlas of LA Pools, these two design-
ers “realize[d] that satellite and aerial imagery are rich with
stories.” In 2014, they organized the Aerial Bold Project,
putting together a massive collaborative effort involving 140
people around the world (mostly living in North America
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Figure 7: The “Face on Mars” photograph taken by Viking
1 in 1976. Sourced from the Wikipedia page’s visual fodder
for “Cydonia (Mars).”

and Europe). These participants spent over two years using
an app to manually detect and label over 11,000 letterforms
from infrastructure. With the help of a type designer, Groß
and Lee proceeded to parse the labeled images to find the
forms which had the best “beauty and readability.” From
this curated set, they made three vectorized fonts: Building,
Suburbia, and Provence. While they commissioned machine-
learning research for character recognition in satellite im-
agery, their final product did not implement the proposed
algorithm. [Gross and Lee 2016; Arawal 2015]

Data

While visiting my oldest brother Liam in Austin, Texas in
January 2018, I began developing my blueprint. Over tacos
from Torchy’s, my brother and I debated how to find the
‘best’ alphabetic forms of a landscape, discussing using hu-
man intelligence to manually pan Google Earth and create
a test set of obvious letterforms. I would then test whether
the proposed algorithm could detect and correctly label the
same ‘obvious’ letterforms. This involved a lot of unneces-
sary hired help, and I quickly decided against this approach.

As I later researched in the Aerial Bold Project, Groß and
Lee entirely crowd-sourced their repository of over 11,000
letterforms. This use of crowd-sourcing brings to light ques-
tions about global labor exploitation. Mechanisms in place
today like Amazon Mechanical Turk outsource small micro-
tasks to large populations of people on the Internet, stream-
lining the process to create a dataset from scratch. However,
this process does not take into consideration edits to col-
lected datapoints nor the ethics and integrity informing the
practice of outsourcing the completion of these microtasks.

In order to curate a new, properly-sized dataset for fodder
for this project, I would need to crowd-source the collection
of the training and testing images to create any valid model.
I instead choose to use preexisting datasets as source mate-
rial for typographic character detection. Using a preexisting
dataset allows this project to stand in conversation with the
past and avoids issues of labor imbalance. Let’s now look
at the history as well as the overall structure of the datasets
used in the progression of Topography Typography.

Figure 8: A subset of glyphs in Paul Elliman’s Found Font
project as traced in Adobe Illustrator. Sourced from the first
Google Image result when searching for “Found Font Paul
Elliman.” May 2019.

MNIST and Extended MNIST

In 1995, the United States’ National Institute of Standards
and Technology (NIST) created a novel database of hand-
written characters called NIST Special Database 19. The
characters were curated from nearly 3700 instances of the
Handwriting Sample Form filled out by both employees of
the American Census Bureau and American high school stu-
dents. See Figure A1 for an example of a completed form.
Each of the 800,000+ characters in Database 19 is repre-
sented by a binary black-and-white 128×128 pixel image ful-
filling membership in one of the sixty-two following classes:

• Uppercase letters: {A, B, C, ... , Z}

• Lowercase letters: {a, b, c, ... , z}

• Digits: {0, 1, 2, ... , 9}

Database 19 splits its training data into characters writ-
ten by American Census Bureau workers and testing data
into characters written by the high school students. [Grother
1995] In an effort to create a representative testing set ac-
commodating for the potential biases in between these train-
ing and testing sets, LeCun et al. curated the MNIST
dataset from Database 19.
MNIST (the Modified National Institute of Standards and
Technology database) is the canonical machine learning
(ML) dataset. In my undergraduate junior fall, I encoun-
tered MNIST in two different computer science assignments
introducing ML topics. Each of the 70,000 characters in
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Figure 9: Designer and technologist Joey Lee stands behind
a poster featuring the Aerial Bold Building font. Sourced
from Lee’s personal website. [Lee 2019]

MNIST are represented as smaller, more compressed ver-
sions of those in the NIST database, depicted by an anti-
aliased grayscale 28 × 28 pixel image fulfilling membership
in one of ten classes: {0, 1, 2, ... , 9}. See Figure 10. MNIST
is split into training and testing sets, sized 60,000 and 10,000
samples respectively, which scramble together NIST Special
Database 19 ’s training and testing data. [LeCun et al. 2013]

Figure 10: 28 × 28 pixel sample from the 0 class in the
canonical MNIST dataset.

In 2017, Cohen et al. published an extended version of the
MNIST dataset known as EMNIST (Extended MNIST).
The two are, or course, pronounced the same. Samples in
EMNIST are based in the same anti-aliased grayscale 28×28
pixel format as MNIST, all with a grayscale character on
a black background. This extension functions as another
variant on Database 19, now containing all of the original
sixty-two classes cleaned and arranged in multiple datasets

including: ByClass, ByMerge, Balanced, Letters, Digits, and
the original MNIST. The four later classes are balanced,
meaning there is an equal number of samples in each class.
For this project I use two of these clean balanced datasets:

• Letters: {A and a, B and b, C and c, ... , Z and z}

• Digits: {0, 1, 2, ... , 9}

Figure 11: 28×28 pixel letterform samples from each of the
twenty-six letterform classes in EMNIST’s Letter dataset.

The Letters dataset contains 5600 instances for each of its
twenty-six classes, and the Digits dataset contains 28,000
instances for each of its ten classes. The Digits class repre-
sents a smaller set of the original MNIST dataset, and I use
this more manageable size without a statistically significant
difference in testing error. [Cohen et al. 2017]

UNIPEN

We just looked at Extended MNIST—the alphanumeric
handwriting dataset— where each datapoint is separated
from the rest and packaged in a pixelated format. This
dataset is said to be an offline handwriting dataset because
its information is already stored in the written images. In
Topography Typography, I also use the UNIPEN online
handwriting dataset to create a dataset of non-alphanumeric
glyph samples. UNIPEN is online in the sense that the in-
formation is saved as points along a vectorized curve in the
graphical space of (x, y) coordinates, not in the form of pix-
els in an image. Online handwriting data is pertinent in
understanding real-time handwriting, as in the case of writ-
ing with a stylus on a tablet.

Imagine this offline versus online difference as similar to my
experiences with the Nazca Lines and el Marañón’s cursive
glyphs. Both of these information systems encode graphical
information. However, my experiences encountering these
glyphs change what I understood about this information.
The Nazca geoglyphs relate to offline handwriting—I see the
glyph all at once in its entirety from the plane’s window. On
the other hand, traveling along the river allows me to un-
derstand the present glyph as I experience it over the course
of time.

To use the UNIPEN dataset like I use the alphanumeric in-
formation from Extended MNIST, I need this online hand-
written data to be offline. UNIPEN’s vectorized coordinates
should be converted into pixelated images. I need to see the
river from above. Thanks for the work of Sueiras et al., I
have access to a free offline version of the UNIPEN dataset.
This rendition is hand-curated, resulting in over 62,000 char-
acter samples categorized in one of ninety-three categories.
From this UNIPEN dataset, I use 6014 samples which act in
one of thirty-one categories of punctuation: [Sueiras 2017]

• Punctuation: { - , ! , ” , # , $ , % , & , ’ , ( ,
) , * , + , , , , . , / , : , ; , ¡ , = , ¿ , ? ,
@ , [ , ] , ˆ , , ` }

5



Normalization

When data is normalized, each sample on the dataset con-
forms to certain standards which make salient the universal
similarities present in the collection. For normalized data,
all of the images should be of the same relative size and
subject matter. For a dataset on handwriting samples, the
forms of a particular category should take up about the same
space in the image field and should all be oriented similarly.

Unlike the samples from MNIST, the samples from this off-
line UNIPEN dataset are not normalized. As curated by
Sueiras et al., each sample is a 64 × 64 pixel image with a
black background and a grayscale glyph in the pixel grid,
spatially oriented as if placed in a line of type. Some punc-
tuation glyphs only fall in the superscript region—the top
third—of the pixel grid including the apostrophe (’), quo-
tation mark (”), and circumflex or caret (ˆ) symbols; other
glyphs including the period (.) and comma (,) fall within
the subscript region—the bottom third—of the pixel grid.
The detection of glyphs in a landscape is not relevant to rel-
ative spatial placement inside the sliding window, and thus I
center all handwriting samples. This maximizes the amount
of relevant detail taught to the neural network about the
relatively smaller glyphs which fall in these constrained su-
perscript and subscript regions.

In order to center these images, I first detect where the glyph
is in the pixel grid and find the smallest rectangular bound-
ing box which cuts off the totally black background, taking
away any black trim found around the pixelated grayscale
glyph. For each 64×64 pixel sample, I convert all non-black
pixels to white, creating a binary image where pixels are
no longer in grayscale but now exclusively black or white.
I re-size this trimmed, binary sample to be 22 × 22 pixels
without misshaping the glyph. I then calculate the center
of mass of this image, weighting each pixel by its density;
the whiter the pixel, the heavier the pixel, and thus the closer
this pixel is to the image’s center of mass. I put this calcu-
lated center of mass as the direct center of the black 28× 28
pixel image field, thus centering the handwriting sample on
a black canvas and providing an approximate three pixels of
padding on all sides of the handwritten glyph. Adjusted for
its center of mass, each sample now lies in the same general
area as do other members of the same class.

Visualizing AVERAGE Data

To visualize the normalization of the offline UNIPEN
dataset, I refer to the AVERAGE font’s punctuation
glyphs. In AVERAGE, I make the ‘average’ mean sample
from all instances of the glyph in the respective dataset—
either Extended MNIST or UNIPEN—by stacking and
equally weighting each sample. See Figure 12. Note the
grayscale inversion in visualizing AVERAGE. In the case of
AVERAGE punctuation, the output represents the ‘average’
glyph in the adjusted UNIPEN dataset. [Kröger 2015]

As an example, let’s specifically look at the normalization
of a single character class in the UNIPEN dataset—our
cephalopodic friend, the asterisk (*). In this case, the center
of mass corresponds to a point in the middle of the symmet-
rical asterisk where the arms of the symbol converge. By
centering with respect to the center of mass, the arms of
the asterisk lie near, if not on top, other asterisks’ similarly
aligned arms, and the centers of all the asterisks should be
within the range of a handful of pixels. See the AVERAGE

Figure 12: A type sample of the AVERAGE font. Like
all AVERAGE samples shown in this paper, the results are
graphically inverted (black on white) to differentiate them
from single samples (white on black) as we see in Figure 11.

asterisk, pre- and post-normalization, in Figure 13. The cen-
ter of the new normalized data is darker and thus indicates
more overlap at the center of the glyph. The concentrated
center of the asterisk is more universal to the form than the
spatial placement of its arms which appear in the AVER-
AGE context as lighter and less dense than the center.

Figure 13: The AVERAGE asterisk (top) and the AVER-
AGE comma (bottom), on a 64× 64 pixel grid straight from
online to offline conversions of the UNIPEN dataset (left)
and on a 28× 28 pixel grid after normalization for center of
mass and binary pixel value (right).

Data Augmentation

Compared to MNIST which had over 5600 samples per class,
the offline UNIPEN dataset has far fewer samples, averaging
at about 200 samples for each punctuation class. I have the
most in the hyphen (–) and period (.) classes with just
under 500 examples per class while I’m limited to just over
80 samples of the grave diacritic (`) and the tilde (˜). For
many of the punctuation glyphs I want to detect, this is not
enough data to properly teach a neural network. There isn’t
enough variation in the given samples to understand which
features of the glyph samples are universal to that class and
which happen to be unique to the samples at hand. As will
be discussed in the next section, we are trying to ‘fit’ a model
and have a neural network classify an image sample as a
member of one of the thirty-one classes of punctuation. The

6



problem with having too little data involves overfitting the
model where the model has too narrow of an understanding
of a form and therefore slight variation on a relevant sample
will be wrongly classified and assigned to a less strict class.

To fix this problem of a lack of sufficient data, I augment
the normalized offline UNIPEN samples, adjusting the given
samples and using them as fodder to produce plausible vari-
ations on the given class. Here are a handful of mapping
techniques I used to alter the given dataset and produce
more fodder for teaching the neural network:

• Rotate: I rotate a sample about the center of the 28×
28 pixel grid—and thus the sample’s center of mass—
within a range of [−5°, 5°] from its initial position.

• Stretch: I stretch the sample vertically and horizon-
tally within a range of three pixels outside the closest
rectangular bounding box of the glyph.

• Shear: I warp the rectangular bounding box of the
glyph into a parallelogram, slightly shifting the glyph
diagonally.

• Add Noise: I add grayscale noise to the sample, ad-
justing the values for an arbitrary collection of ten per-
cent of the pixels in the sample’s 28× 28 pixel grid.

These basic techniques allow enough variation to create
thousands of samples for each punctuation class—plenty on
which to train the neural network. Other more advanced
techniques for data augmentation—including elastic distor-
tions and perspective transformation—can also be employed
to create more training and testing fodder. [Bloice 2019]

Satellite Imagery

In December 1972, astronauts of the Apollo 17 mission cap-
tured the “Blue Marble” image on their way to the moon.
This image showcases the world as a blue marble floating in
black space, marking the first human-photographed image
to capture a fully illuminated Earth. The “Blue Marble”
image circulated broadly, framing global eco-political con-
versation and understanding in the 1970s. This self-portrait
helped create a world consciousness around humans’ impact
on the Earth. See Figure 14.

This eco-political framing came at the same time Secretary
of the Interior Stewart Udall pushed to fully document the
surface of the earth and provide unambiguous documenta-
tion of human land use. Udall urged Lyndon Johnson to
form an “Earth-observing program” which would employ
space-based satellites. From this push emerged NASA’s
Earth Resources Technology Satellite (ERTS) which would
later to be known as Landsat. Since 1972, the Landsat
missions—eight to date—have run continuously. Landsat’s
data archive aims to provide a record of broad satellite im-
agery of Earth’s surface. Today run by the United States
Geological Survey (USGS), each functioning Landsat satel-
lite has a ninety-nine minute orbit, and every sixteen days,
the satellite completely documents our Earth. Today, the
USGS provides this satellite imagery free via the Internet,
allowing everyone on the world access to this information.
Most publically available satellite imagery, including that on
Google Maps, is acquired by the USGS and their Landsat
missions. In this project, I use satellite imagery curated by
Google Maps and available through the Landsat missions
run by USGS. [Shurkin 2012]

Figure 14: AS17-148-22727, commonly known as the “Blue
Marble” photo. The original label read: “View of the Earth
as seen by the Apollo 17 crew traveling toward the moon.
This translunar coast photograph extends from the Mediter-
ranean Sea area to the Antarctica south polar ice cap. This
is the first time the Apollo trajectory made it possible to pho-
tograph the south polar ice cap. Note the heavy cloud cover
in the Southern Hemisphere. Almost the entire coastline of
Africa is clearly visible. The Arabian Peninsula can be seen
at the northeastern edge of Africa. The large island off the
coast of Africa is the Malagasy Republic. The Asian main-
land is on the horizon toward the northeast.” The image
was originally taken with Antarctica at the top of the image;
I’ve flipped the image to show how it commonly appears in
graphic circulation. [NASA 2001]

Sourcing Imagery for a Location

As discussed in the Introduction, I curate the satellite im-
agery for a location specifically with respect to my memory
and understanding of the place. With a specific place in
mind—a neighborhood, town, city, or back-country site—I
use the desktop application Google Earth Pro to find the
rectangular bounds for the space and save a single image
with the rough dimensions of 1200 × 700 pixels. I make
slight adjustments to the image in order to emphasize the
difference between foreground and background. In images of
mostly uniform color density and tone, I increase contrast
and slightly adjust the highlights and shadow properties in a
basic photo processing application like Mac’s default Photo.
For all images, I crop out the Google Earth watermark. See
an example of this transformation in Figures A2 and A3.
For other images with relatively good contrast throughout
the topography, I leave these images in their raw states.

Corita Kent’s Finder

As an artist and nun, Sister Corita Kent taught at Los
Angeles-based Immaculate Heart College, the school where
my maternal grandmother received her degree in sociology.
Kent often instructed her students to interact with the world
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through what she named a finder—a piece of paper with a
small rectangle cut out from the middle. See Figure 15. The
finder privileges a perspective of the world where content
is isolated from context and where forms are highlighted.
[Rose 2009]

The finder became integral to Kent’s curriculum,
inspiring the close study of objects—like cars—that
might normally be passed without consideration of
their aesthetic value. Any car becomes a thing of
beauty when viewed through a finder,” reads one
prompt. “View the facade of the nearest building
through the finder and isolate 10 details to draw
on the spot” instructs another. [Gotthardt 2017]

Figure 15: Looking through Sister Corita Kent’s finder.
Sourced from a YouTube excerpt of 2009 film “Become a
Microscope” directed by Aaron Rose which centers around
Kent’s life, art, and teachings. [Rose 2009]

Sister Corita Kent taught others to examine their envi-
ronments in much the same way my algorithm maneuvers
through an image. My glyph detection algorithm uses the
idea of a sliding window through which to look and investi-
gate a landscape. With my own algorithmic finder, I look at
the topography one small section at a time, trying to make
sense of that little chunk without distractions from the larger
landscape. Below, I develop an algorithm for processing the
satellite imagery from the USGS’s Landsat feed to create the
set of samples for eventual glyph detection.

Sample Curation from a Single Resolution

Before I give the neural network the input image for glyph
detection, I preprocess the image and curate a set of
grayscale, 28 × 28 pixel samples. I first convert the image
to grayscale from RGB. This allows the input to the neural
network to be in the same form as the offline UNIPEN and
EMNIST samples. The satellite imagery now has one layer
of information per pixel—its grayscale value in the range
[0, 255]—instead of three separate layers for the red, green,
and blue channels in the initial full-color image.
After preprocessing, I curate samples by stepping through
the image. Stepping through an image means something
different than splitting an image into a grid and iterating
through each element. Instead, imagine I have a 28×28 pixel
window—like Kent’s finder—which I slide across the rows

and columns of the image to take samples. For this example,
let my reference location be the top left of the 28× 28 pixel
window—I’ll start the sample curation at the top left of the
image, and thus my reference location starts at (0,0). With
a step size = 4, I move the window to the right, sliding
over four columns of pixels. The reference point moves from
(0, 0) → (4, 0) → (8, 0) → etc. Once my window reaches the
end of the row, I restart at the beginning of the row and shift
down by the step size of 4. My reference point proceeds to
move across the row from (0, 4) → (4, 4) → (8, 4) → etc. In
this manner, I step through the pixels in the image. I have
found a step size = 4 to be most effective in terms of trading
off between speed and content traversed.

Figure 16: Letterform detection algorithm applied to aerial
image of Princeton, New Jersey circa February 2018.

Sample Transformations

Having generated a 28 × 28 pixel sample from the image, I
transform that sample, providing more variation from this
single viewpoint. I use three methods for transforming the
curated sample: rotation, reflection, and grayscale inver-
sion. I perform the sixteen possible combinations of these
transformations in order to create a diverse representation of
the set. See Figure 17 for a visual example of these sixteen
combinations of transformations.

Grayscale inversion is especially important in this project.
All training and testing data presents grayscale depictions of
light characters on a black background, and the neural net-
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work learns to predict a light form on a respectively darker
background. Therefore if the satellite sample’s glyph hap-
pens to be of a dark form on a lighter background, I want
to feed the neural net an image of this glyph in an inverted
context. Inverting the grayscale values of all of the sample’s
pixels efficiently performed this desired transformation.

Figure 17: The sixteen possible combinations of the
three transformations—rotating, flipping, and inverting—
performed on a grayscale, 28× 28 pixel sample. This sample
is an image of the sidewalk in front of Scully Hall on Prince-
ton University’s campus; I walked along this X detected out-
side Scully every day to eat dinner in my food co-op.

Image Pyramids

A large glyph and a relatively small glyph both from the
landscape have the same presence in the final resulting font,
and the combination of the two in concert with one another
provides a more complete story of the land. Therefore, my
algorithm detects glyphs in the landscape which appear at
varying scales. In order to not only find letterforms in the
28× 28 pixel form of the original image, I create an image
pyramid of the 1200×700 pixel original image. This means
downsampling and resizing the original image to multiple
smaller pictures as visualized in Figure 18 including images
of the following dimensions:

(1) ↓

1200 × 700

(2) ↓

600 × 350

(3) ↓

300 × 175

(4) ↓

150 × 87

(5) ↓

75 × 43

Figure 18: A five-tier image pyramid as visualized on a
satellite photo of Naples, Florida where I grew up. The de-
tection algorithm starts from the version of the image with
the highest resolution (top) and proceeds until it reaches that
with the lowest resolution (bottom).

For this algorithm, I step through each of these differently-
sized images, looking at 28×28 pixel samples in the method
detailed before. I save the most confidently detected sample
per character class; by the end of the script, one result for
a glyph class may be at a different resolution than another.
In the computer-generated output from the neural network,
one letter may be 56× 56 pixels in the original image while
another letter could be 28×28. See an example of multi-scale
letterform detection in Figure 25.

Setup

I write the scripts for this project in a set of Jupyter Note-
books (jupyter.org), an open-source project which easily
runs my Python 3 scripts. I host these notebooks directly
on my computer.

Using a preexisting dataset allows for guidance from previ-
ous work. Especially using a dataset in the canonical MNIST
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family, I found plenty of online interest and experimenta-
tion on the code-sharing website Github (github.com), used
commonly by developers for version control and code dis-
tribution. I found Ryan Cooper’s off-the-shelf solution for
object detection of EMNIST characters using a neural net-
work, and I use this code as a template for a portion of my
algorithm. [Cooper 2017]

Teaching a Computer to Classify Glyphs

Using the Extended MNIST and UNIPEN datasets of hand-
written glyphs, I train three separate neural networks to un-
derstand the universal elements of these categorized glyphs.
Each neural network specializes in one of three types of
glyphs: letterforms, number forms, and punctuation. Let’s
walk through the basic intuition for the course of this project
and then delve into technical aspects of implementation.

Typography as a Set of Signs

Typography is a set of glyphs, and a glyph is a symbol which
itself is a type of sign. To understand a sign, let’s first take
the referent which refers to the thing itself; in our exam-
ple, let’s take me—Kara Lynn Bressler, the actual living
person—as the referent.

The sign stands in place of the referent and is made up of
two components: the signifier and the signified. The sig-
nified embodies the sign’s meaning and concept, while the
signifier is a manifestation of the sign. In our example, the
signified is me—Kara Lynn Bressler. There are three types
of signifiers: iconic, indexical, and symbolic. The iconic
sign references and mimics the physical appearance of the
referent; a drawing of tall stick figure functions as an iconic
sign for myself in that it incorporates my physical traits.
The indexical sign refers to something showing ‘proof’ of
existence; a voicemail I leave on your phone serves as testa-
ment to my presence on the other side of the line and my
past action of calling you. Finally, the symbolic sign is cul-
turally learned, and the manifestation of the symbol is not
connected with the reality of the signified. A glyph in the
Latin alphabet is a symbol; its existence does not refer to the
glyph’s respective sound or elemental meaning. Without cul-
tural context and previous knowledge of the written script,
symbols have no stake in reality. My family grew up with
English and thus understands the written letter K refers to
me; meanwhile, someone unfamiliar with my presence or the
script has no clue to decipher that the lines forming the K
reference myself. As symbols, Latin glyphs do not embody
the phenomena they wish to reference. [Bradley 2016]

Teaching a Human to Classify Glyphs

Since glyphs are symbols, the forms must be learned. With
repeated exposure in different environments, I understand
the universal traits of the K. If you write a K on a chalk-
board, I do not have to have previously seen this exact ren-
dition of the glyph, but it should look close enough to what
I’ve seen before that I can properly classify it.

Humans are able to learn these universal traits of typo-
graphic forms, but there is not a hard-defined list of rules
defining the universal traits of specific glyphs. There are
more convincing and legible versions of letterforms, but we
are able to create and identify unique forms which still serve
as members of a traditional glyph class. Without a hard

set of rules formally defining the typographic glyphs, we are
unable to explicitly teach an algorithmic typography classi-
fier. Therefore, we must show the computer program many
examples of each class of glyphs in order for the computer
to understand how to classify a form, no matter how unique
the encounter.

What is a Neural Network?

Modern computers have a mind-boggling capacity for com-
putational power, but there is no program today that can
independently think and make associations without a human
programmer initiating these decisions.
The phenomenon of pareidolia shows that the human brain
can detect patterns in random data. Psychologists hypoth-
esize that pareidolia—particularly seeing human faces in
inanimate forms—stems from an infant’s necessity to iden-
tify its parents as well as potential predators. [Coolidge and
Coolidge 2016] We compare this ability to that of the modern
computer and see that unlike the human brain, the computer
can only do what it is told. In an effort to create more com-
putational complexity, we create artificial neural networks to
simulate connected neurons in the human brain, attempting
to mimic the brain’s ability to form pros and cons about a
situation and then make decisions. [Woodford 2018]
A multi-class neural network is a structure of connected
nodes with different respective weights. As a network sees
different examples of the various classes it wants to distin-
guish amongst, the network assigns different weights to the
nodes, adjusting its judgment scale. As more information
passes through the network, the weights are reevaluated, and
when a critical mass of examples have passed through, the
model can properly make its decision in classifying an input.

Training the Neural Network

Each of the three neural networks I implement—detecting
letters, numbers, or punctuation—is a model. As used here,
a model describes a literal mapping from an input to an
output; each network takes a 28×28 pixel input and outputs
an educated guess about the present glyph. The network
can receive a 28 × 28 pixel sample from satellite imagery
and guess the pictured typographic form. Some sections of
satellite imagery will be better than others, but we want
to be able to classify any given section in order to create a
complete typeface.
I use the architecture of a recurrent convolutional neural net-
work (RCNN) to organize the functionality of my network.
This architecture allows for the output of a given node to
act as input for the same node; recurrence and back-filtering
both help the network adjust its nodes’ weights to learn from
successes and failures in detection. I decided to run a RCNN
due to its limited parameters compared to a basic convolu-
tional neural network and the RCNN’s recent success and
speed in object detection. [Liang and Hu 2015; Cooper 2017]
To train this neural network, I show it many examples from
a variety of glyph classes. These initial samples come from
a training dataset, different than the samples I use later
for testing. I pass the pre-labeled sample images through
the network one-by-one. Each handwriting sample image is
assigned a label for its relevant class: {A and a, B and b, C
and c, ... , Z and z} for letters, {0, 1, 2, ... , 9} for numbers,
{ - , ! , ” , # , $ , ...} for punctuation. As images trickle
through the network, the predictive quality improves.
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As the network’s programmer and teacher, I set up the guard
rails to facilitate a positive learning environment. To do
so, one tactic I employ is to use multiple epochs, where
in each epoch I feed the neural network all of the training
data through once. I’ve found running each of my networks
through ten epochs is appropriate in properly training the
three distinct models.

To test the efficiency of training, I show the neural network
variations on glyphs that it has not seen before. I take new
pre-labeled testing samples and see how well they perform
on the trained net. For the punctuation dataset, I manu-
ally separated training and testing samples, assigning just
under a quarter of images from the dataset as testing data.
Extended MNIST’s alphanumeric samples are already sepa-
rated into training and testing data. Here, I’m not testing
rote memorization. The model is forced to make an ed-
ucated guess and classify forms it has not been explicitly
trained to recognize. This is good practice for the world in
which very few landforms which form ‘perfect’ glyphs, and
resulting forms are bound to be more varied relative to the
more uniform, normalized figures in the Extended MNIST
and UNIPEN datasets.

With EMNIST’s Digits dataset, I train the network to a
testing accuracy of over 99 percent; for EMNIST’s Letters
dataset—over 93 percent, and for the UNIPEN dataset—92
percent. Regarding timing, it takes about twenty minutes
to train the RCNN with ten epochs on EMNIST’s Letters
dataset and about half an hour for Digits. Training the
neural net on the normalized offline UNIPEN punctuation
dataset takes about ten minutes for ten epochs.

Detecting Glyphs

After training the network, I then test the network on
the curated 28× 28 pixel samples, simulating typographic
pareidolia. To do so, I feed the set of curated 28× 28 pixel
samples harvested from the satellite imagery to the neural
network. From the network, I receive a prediction and thus
a detection of the glyph label A, B, C, etc. as well as the
network’s percent confidence in the prediction. The predic-
tion comes from the softmax function which takes as input
n numbers (n = 26 in the case of the letterform detection,
= 10 for the digit detection, and = 31 for punctuation de-
tection) and outputs a set of n respective probabilities from
the network’s learned probability distribution function. For
a given input sample of satellite imagery, the network might
output 94% confidence in the presence of a C, 3% confidence
in an O, 2% confidence in an L, and 1% confidence spread
throughout the other twenty-three letterform classes. Each
28× 28 sample from satellite imagery is classified as a glyph
class, and I save the ‘best’ sample per class as determined
by the largest respective confidence from the softmax con-
fidence; at any given time during detection, I am saving no
more than n samples for output from the algorithm. Detect-
ing glyphs in a 1200×700 original image takes about twenty
minutes to complete.

Extensions to Improve Legibility

Seeing early renderings, people often commented on the ‘hi-
eroglyphic’ and ‘blocky’ qualities of the resulting glyphs;
many also stated that the forms were quite difficult to read.
This feedback demonstrated poor legibility of the networks’
outputted predictions.

Figure 19: Computer-detected letterforms for Princeton,
New Jersey. The output grid should be read in alphabetic
order starting from the top left, proceeding across and down.

Let’s look at some glyph-specific problems in initial detection
trials. Upon examination, illegibility primarily stems from
the absence of a stem—the main vertical stroke—in the I, J,
L, and T characters. Instead, the algorithm detects different
combinations of horizontal strokes for these four problematic
letterforms. The I is often represented by two horizontal
strokes of equal length on the top and bottom, the J by two
horizontal strokes with a longer top and shorter bottom, the
L by one horizontal stroke on the bottom, and the T by one
horizontal stroke on the top. See Figure 20.

Clustering of Similar Forms

From the available training data, I can selectively show forms
to the neural network. If the network only encounters glyphs
of a specific class with curated traits, that is all the network
will learn about that form. I can limit the shown variation,
intentionally limiting the network’s perspective.

In order to improve the legibility for the problematic classes
of I and J, I algorithmically group members of each class
which are visually similar to one another. I perform this
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Figure 20: Collection of vectorized I letterforms, many of
which lack complete stems and are instead represented by two
horizontal strokes.

grouping using k-means clustering on all the samples of
a class. I input a value for k, say k = 3, and the k-means
clustering algorithm creates three mutually exclusive groups
which group together similarly drawn letters. See Figure 21.
I’ve found k = 3 to be appropriate for the I class and k = 10
appropriate for the J class.

Before I conduct this clustering, I reduce a glyph class’
sample data down to its most distinct parts using princi-
pal component analysis (PCA). This is dimension reduc-
tion and speeds up the necessary processing in the cluster-
ing algorithm. Using PCA, I reduce the number of relevant
‘features’—pixels—from 28× 28 = 784 pixels per sample to
330. From this reduction, I take the two most variable pix-
els as determined by PCA—the two pixels whose grayscale
values are hardest to predict across all the samples—and for
each sample I graph these pixel values in a Cartesian graph.
On this graph as seen in Figure 22, I then conduct k-means
clustering as detailed above.

Figure 21: On the left, the AVERAGE of all 5600 samples
in the I class and, on the right, the AVERAGE of each of
the k-means clusters with k = 3 as performed under PCA.
Wanting to ignore horizontal strokes for legibility reasons, I
only train the neural network on samples from the first two
clusters in order to guarantee a detected stem.

After clustering the respective I and J classes, I choose the
clusters which do not have horizontal strokes. For example,
I ignore the third cluster in Figure 21 which prominently
includes top and bottom horizontal strokes, taking the sam-
ples instead for the first two clusters. I selectively curate the
samples for the legibly problematic I and J classes as well
as all the data from the rest of the glyph classes to train the
neural network.

Figure 22: Visualizing k-means clustering on all 5600 sam-
ples in the I class of the Extended MNIST dataset as orga-
nized by the class’ two principal components. The first com-
ponent maps to the x-axis, the second to the y-axis. Each
cluster’s centroid is marked by a white crisscross.

Calculating Legibility

In determining the ‘best’ glyph from the highest probability
outputted by the softmax function, I am determining the
most unique form found in the landscape that is a member
of the given glyph class. That is, this form has the resulting
property that it definitely is not a member of any of the
other classes. I find this to be a convincing argument for
the creation of a site-specific glyph; this ensures different
locations result in a unique collection of forms corresponding
to the space’s hyper-specific landforms.

However, this criteria for determining the ‘best’ glyph does
not take into account the legibility of the resulting form—
how close this form is to the ‘true’ form of the corresponding
class. The definitely-not-any-other-glyph form is not neces-
sarily the remaining possible glyph. There are other possible
forms other than the forms of the 26 letters, 10 digits, or 31
punctuation marks. Therefore, for the legibly problematic
letterforms I, J, L, and T as well as the sometimes fickle V,
X, and 7, I calculate how close the ‘detected’ form is to the
AVERAGE sample of the respective class. To calculate this
legibility, I perform a per-pixel calculation, subtracting the
grayscale pixel value of the detected sample from the corre-
sponding pixel value in the AVERAGE sample. I calculate
a uniqueness quotient to measure respective legibility by us-
ing the L2 loss function—summing up the squares of these
respective differences; the smaller the uniqueness quotient,
the more legible and close-to-the-detected-form the result
is. I save the ‘best’ glyph in the class as the result with the
smallest uniqueness quotient.

Font Creation

A central focus of this project is to create a typeable font
for a given location, a font able to properly circulate and
function as a graphic design tool. I need to create a proper
font, not one whose glyphs are based in highly pixelated
images as are outputted by the neural network as see in
Figure 23.

Simplifying the Glyphs

From the 28×28 pixel output of the algorithm, I hand-trace
the forms of the glyphs. I overlay a roll of tracing paper
atop the grid of outputted images, and, with an ink pen, I
trace the outlines of the glyphs. I try to stay as true to the
present forms as possible while still projecting typographic
pareidolia on the pixelated samples. See a traced output
from Princeton, New Jersey in Figure 19.
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Having finished tracing the glyphs, I vectorize them. I im-
port a high contrast picture of the inscribed tracing paper
into Adobe Illustrator, where I make a Live Trace of the im-
age (accessed under Object → Live Trace → Make). This
function turns the pixelated images of the forms into vector-
ized outlines.
These outlines from Illustrator copy and paste directly into
the Glyphs App (glyphsapp.com), where each of the forms
are entered in as individual characters in the alphabet. The
vectorized font is then exported directly from the app as a
TrueType (.ttf ) or OpenType (.otf ) file. These files open
up directly on a computer via an application like Font-
Book to be instantly downloaded and used on any computer.
Throughout the process, I attempted different ways of ap-
proaching the tracing and vectorizing procedure. I traced
the letterforms digitally in Illustrator with Bèzier curves as
well as exported high-resolution computer-generated out-
puts as bitmaps for vectorization directly in Illustrator.
However, the hand-drawn outlines on physical tracing pa-
per feel right for this project; this technique gives me the
best result in terms of smoothness of a character’s form and
control over the font’s overall weight. Aptly, the handwritten
quality visually references the handwritten samples training
the detection algorithm.

Figure 23: Hand-traced letterforms from Princeton, New
Jersey as seen on a section of a roll of tracing paper.

Selecting from Options

In an effort to make the fonts more legible, I perform k-
means clustering in curating fodder for the network as well
as calculate the relative distance from glyph samples as I
described before. However, even these resulting forms can be
questionable in legibility. Therefore, I run the algorithm on
multiple input images to increase the likelihood of a ‘legible’
glyph for a given category. From each of these images, I can
receive a different output from the network.

I trace each of the forms and put them side by side, hori-
zontally lining up all the As, all the Bs, etc. from a given
place. See Figures A5–A9. I curate the ‘best’ letters for
the final vectorized font. I’ve tried out different techniques
for choosing these final forms. One technique involves mark-
ing the most legible uppercase and lowercase results myself.
Another process involves sitting with a group of people and,
without pointing, debating which form is the ‘best.’ In dis-
cussion I find myself learning about different differentiators
in determining what is ‘best,’ and this last crowd-sourcing
approach mimics the structure of the crowd-sourcing of sam-
ples in the EMNIST and UNIPEN handwritten datasets.

Case Studies

With a complete typeface, I am able to try out my fonts in
a range of applications. Here are a few case studies looking
at the most developed sights of intelligibility of Topography
Topography to date—July 11, 2019.

Initial Testing with NAPLES

I’m bothered by computer graphics research when I see re-
searchers using an arbitrary test set. Using a preexisting
dataset of test images like ImageNet or COCO (Common
Objects in Context) from related work studies is understand-
ably helpful in the search for comparison and reproducibility.
However, without constraints of a large curated dataset or
randomized content, I feel novel research should be initially
tested on images hand-selected by the researcher, not Inter-
net stock images. This creates a more unique, handwritten
quality to the work and presents context behind the creation
of the eventual algorithm or application. [Deng et al. 2009;
Lin et al. 2015]

For this project, I intentionally first tested my algorithm on
two specific locations: Naples, Florida and Naples, Italy. I
lived my first eighteen years in Naples, Florida. In aerial
imagery of Southwest Florida, there is stark contrast in the
dark bodies of water weaving around the light-colored in-
frastructure of roads and neighborhoods. See the spatial
detection of letterforms in Naples, Florida in Figure 25 and
some of its traced letterforms in Figure 24. On the other
hand, Naples, Italy presents a dense port city whose aerial
imagery is comparatively flat in color. Both locations pro-
vide unique challenges which helped develop the algorithm,
especially the preprocessing of the satellite imagery.

PRINCETON Visual Arts

In the context of the fourth floor junior’s studio in 185 Nas-
sau on Princeton’s campus, I started to run my algorithm
and trace the resulting outputs. I hung up the tracing paper
with the initial blocky forms on the walls of my open stu-
dio, and week after week, my collection grew. As a junior
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Figure 24: Hand-traced letterforms from Naples, Florida
as seen on split-up sections of a roll of tracing paper. Each
column shows the result from a different satellite image as
vectorized by Illustrator’s Live Trace.

in Princeton’s Visual Arts (VIS) Department, I started to
test my fonts as fodder for graphic design projects.

VIS Logo

In response to Eric Li’s design for a department logo which
initially employed Times Italic, I created the current VIS
logo as typeset in PRINCETON. To date, a large 3’×3’
printout of the logo can be found outside 185 Nassau in
an informational display case. Members of the Princeton
community, including many people in the Computer Science
department, walk by this sign every day on their way to grab
lunch on Nassau Street.

Art Show Posters

While developing this algorithm for glyph detection, I
was also creating printed matter for the Princeton Visual
Arts Department’s Junior Independent Work Show, known
around campus as The VIS Junior Show.

I decided to incorporate my font system in a poster campaign
for the show, asking each of the twenty artists exhibiting
work for a physical place in the world which has greatly
impacted their artistic practice. This question resulted in
an array of answers, from Midtown Sacramento to I-95 to
Southern Norway. See the final result of the posters series
in Figure A12 and Figure 27.

Figure 25: Letterform detection algorithm applied to a
satellite image of Naples, Florida circa March 2018. I grew
up in a house at the center of this image.

A year after The VIS Junior Show and the debut of Prince-
ton’s contentious type (see Figure A13 ), I returned to
PRINCETON to create the poster for the final senior show
titled Final Runnings Before the After, a student group show
exhibiting pieces from VIS seniors. See Figure A17. [Rivitz
2018]

Mapping Campus

In my four years on campus, I’ve tried to explore every nook
and cranny, looking to understand the space by absorbing
spatial relations and details of light. In an effort to better
understand the source of my glyphs and present a more cohe-
sive visual story for the viewer, I took up the task of visiting
the PRINCETON glyphs at their respective sources. By
mapping the alphanumeric glyphs of PRINCETON to their
geographic locations and doing so by hand, I was able to in-
ternalize where and in what context these forms are located.
This too helped me to understand the formal relationships
between different glyphs sourced from overlapping sections
of satellite imagery. See PRINCETON’s map in Figure 28.

Princeton Visual Arts 2019 Catalogue

I wrapped up my stint in Princeton’s Visual Arts Depart-
ment by editing and designing a catalogue of work of the
Visual Arts Department’s Class of 2019. Solely typeset in
PRINCETON and AVERAGE, I included printed matter
created in Topography Typography fonts including the VIS
logo, various art show posters, and the map of PRINCE-
TON. With the help of Eric Li and Nazlı Ercan, I printed
500 copies of this book. On the last page of the book, I
include “A Note on the Type” in PRINCETON:

This catalogue is printed using Kara Bressler’s To-
pography Typography, a typeface made from the
aerial forms of a place. Character forms are de-
tected from satellite imagery using an algorithm
trained on the extended form of the 1995 MNIST
handwriting dataset as visualized in the AVER-
AGE font. Each glyph illustrates an indexical trace
of the referent landscape. 185 Nassau lies between
PRINCETON’s q & a. Written in PRINCETON.
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Figure 26: Princeton Visual Arts’ VIS logo as seen in
PRINCETON. This iteration manifests as a circulating lap-
top sticker distributed by the department.

BEARS EARS

In the spring semester of my senior year, I took the oppor-
tunity to travel to southeastern Utah and study native and
public land use in the area. As part of a class field trip, I
met and listened to people who live in the area. I spoke with
natives whose people had lived in the Four Corners region
(present-day Utah, Colorado, Arizona, and New Mexico) for
thousands of years; these are storied landscapes, and in the
little time I spent in the area to date, I learned a lot about
the interplay between land and language.

A Proclamation

In graphic design, Lorum ipsum is the canonical text serving
as a placeholder to test typesetting layout before finalizing
a piece’s content. Just as I dislike the mode of graphics
research which unnecessarily tests algorithms on impersonal
fodder, I believe typesetting a font from Topography Typog-
raphy with the ‘neutral’ Lorem ipsum strips the font from
its indexical context. Especially in the context of auratic
and sacred Bears Ears, I did not want to test the work on
just any body of text.

Instead, I chose meaningful content relevant to the land—the
Land Proclamation deeming Bears Ears a National Monu-
ment. In 2016, President Barack Obama established Bears
Ears National Monument, a 1.35 million acre space granted
as public land under a presidential proclamation via the An-
tiquities Act. I used an abridged form of this text to test
BEARS EARS. I continued to return to this text, ultimately
creating a circulating pamphlet, a printed manifestation of
Topography Typography. See this pamphlet in Figure A9.
I also scaled up the Proclamation to serve as an 8’×8’ piece
printed as black wall vinyl in Public Lands, Private Hands,
an art exhibition in Princeton’s Nulu (Lewis Arts Complex).

Figure 27: Circulating poster for The VIS Junior Show,
April 2018. The entire poster is in the font PRINCETON,
New Jersey. This poster was posted on screens and signs at
Princeton University. It also appeared on the graphic design
is my passion Facebook meme page in April 2018.

BEARS EARS Bounded

Less than two years after Obama established Bears Ears Na-
tional Monument, Donald Trump, in an executive order, cut
the monument’s acreage by eighty-five percent, thus choos-
ing to ignore the boundaries as they were originally drawn.

When I traveled to the Four Corners region to visit Bears
Ears, I started to run the detection algorithm on the land-
scape with boundaries that had been verbally described to
me, using broad rectangular satellite images of the land. As
I do not use political boundaries when curating satellite im-
agery, I was only using rough estimates of the monument’s
boundaries. After vectorizing the font and testing the type-
face on the Proclamation, I returned to the geo-coordinates
of the individual glyphs and mapped them to their referen-
tial locations. Due to some extremely legible river forms in
both the Canyonlands (northwest of Bears Ears) and Mon-
ument Valley (south of Bears Ears), over half of the glyphs’
referential locations were positioned outside the boundaries
of the Monument as designated under Obama. By spatially
mapping out the forms, I am able to better understand the
context of the storied forms I am curating. In the case of
BEARS EARS, it is essential to the font that the geoglyphic
forms lie within the boundaries. These lines were meticu-
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Figure 28: Uppercase letters, lowercase letters, and dig-
its of PRINCETON mapped to their respective locations on
campus. Find Nassau Street at top of the map. This graphic
appears on the back of the Class of 2019 VIS shirt and in
the Princeton Visual Arts 2019 Catalogue of senior work.

lously drawn by those familiar with and invested in the area
in order to encompass spaces sacred to the native peoples of
the region. To be true to the naming of the font, I need to
respect this containment. Upon understanding which glyphs
lay outside the bounds, I curated another batch of satellite
imagery well within the boundaries of Bears Ears and con-
ducted another pass of glyph detection and vectorization to
create the final result—proper BEARS EARS.

Revisiting the Glyphs Remotely

In creating the properly-bounded BEARS EARS Proclama-
tion wall piece, I remotely revisited each of the glyphs via
Google Earth. I used the geo-coordinates and orientation of
the ‘best’ detected samples to curate a set of images depict-
ing the range of the typographic knowledge of the land and
the context of each glyph. See these high resolution images
in Figure 29 and compare them to their corresponding de-
tection samples outputted from the detection algorithm in
Figure 30.

Future Steps

As I’ve mentioned in the text, this project stands to be re-
framed and reconsidered for years to come. Here are some
aspects of the Topography Typography project which lie on
the horizon.

Autokerning

As I continue to work on this project, I would like to imple-
ment a system for autokerning my fonts where I can input
the glyphs and algorithmically generate the spacing in be-

Figure 29: Revisited landforms at the sites of the BEARS
EARS glyphs’ referential locations. These high resolution
images are hand-curated from Google Earth Pro.

tween character forms. In order to kern my fonts for proper
spacing, I currently adjust the spacing in between pairs of
letterforms by hand in the Glyphs App, and this can take
me up over twelve hours per font. Even the final result of
my hand-kerning as embedded in the circulatable TrueType
or OpenType file is sub-optimal, as I am kerning for a rel-
atively tight letter spacing. I am skeptical of removing the
designer’s eye from the final result, but it would be helpful
to ask for technology’s assistance in taking an initial stab at
this arduous task.

Currently I typeset with the autokerning feature of Adobe’s
Optical Kerning to autokern text in-place—a solution fine
for me today but not okay in a widely circulating font where
many will not have access to the Adobe Suite.

Free, Open, and Available to the Public

Google Fonts curates the widely accepted standard for free
font distribution, currently circulating just over 900 font
families. Many web developers and designers use Google
Fonts as their go-to place for font fodder. I would like to
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Figure 30: A curated set of computer-detected letterforms
for the region of Bears Ears National Monument as desig-
nated in 2016. Each is a 28× 28 grayscale sample.

add BEARS EARS to Google Fonts for global usage. Paired
with written context and the glyphs’ geographic locations,
a curated set of Topography Typography fonts will also ex-
ist at topography-typography.info, free for download and
circulation.

Visiting and Revisiting

As I continue to understand this project, I would like to
continue on-site work. I plan to visit more detected land-
forms and create an interplay between visiting one of these
geoglyphs and illustrating it for circulation.

I have developed my font creation pipeline substantially over
the past year, and I would like to revisit many of the initial
locations I quickly saw in my 100+ glyph detection trails,
this time in depth for each place. I would like to spend
time reconsidering imagery over time and understanding the
bounds of these areas, mapping where glyphs come from and
understanding the landforms that particular glyph classes
tend toward.

Conclusion

In its conception, I meant this project to lie at the fringe of
computer science research. Unlike Groß and Lee with their
Aerial Bold Project, I am not necessarily searching for the
most legible and clean letterforms; I want to keep some in-
dex of the topography in the final vectorized version of the
typefaces. As I iterate on different aspects of this project, I
continue to learn from the results, helping me reframe how
I’m thinking about land, language, and everything in be-
tween. More to come!
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Figure A1: NIST Handwritten Sample Form. August 1989. Image courtesy of Patrick Grother. [Grother 1995]
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Figure A2: Raw satellite imagery of Princeton, New Jersey circa February 2018.

Figure A3: Cropped satellite image of Princeton, New Jersey adjusted for contrast, highlights, and shadows.
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Figure A4: Letterform detection algorithm applied to satellite image of Naples, Florida circa March 2018. This output shows character
detection of both 28⇥ 28 and 56⇥ 56 pixel samples. For this image, the algorithm produced a five-tier image pyramid.
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Figure A5: Computer-detected letterforms from the Bears Ears region. The corresponding AVERAGE uppercase and lowercase characters
(left) label the output of the row.
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Figure A6: Computer-detected punctuation from the Bears Ears region. Each row is labeled by its respective class of punctuation as seen in
the corresponding non-normalized 64⇥ 64 pixel and normalized 28⇥ 28 pixel AVERAGE characters.
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Figure A7: Computer-detected digits from the Bears Ears region.

Figure A8: Traced results of thirty trials of digit detection in the Bears Ears region accompanying the computer-detected samples (above).
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Figure A9: Circulating pamphlet with an abridged version of the Bears Ears National Monument Proclamation (bottom) as signed by
President Barack Obama and the traced results of thirty-two trials of letterform detection in the Bears Ears region (top).
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Figure A10: Design for an Apple Watch clock interface. Typeset in LAS PIEDRAS—derived from the namesake river in Peru. The watch
currently presents the number 2.

Figure A11: Continuous river of numbers using LAS PIEDRAS.
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Figure A12: Poster series with individual names for The VIS Junior Show as circulated in Spring 2018. Each student was prompted for
the place which has inspired their artistic practice the most. Typeset in CUPERTINO, GUANGZHOU, VILNIUS, ARACAJU, ZAPOTLÁN
DEL REY, NORWAY, MIDTOWN SACRAMENTO, BROOKLYN, PATERSON, PLANO, NAPLES, BRIDGEWATER, I-95, MANHATTAN, LOS
ANGELES, BALTIMORE, REDWOOD CITY, ENGLAND, NAOSHIMA, and PRINCETON. April 2018.
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Figure A13: The main circulating poster for The VIS Junior Show appeared on a popular Facebook meme page. I received this screenshot
from a friend before the post was deleted soon after. At the time, the meme group circulated to over 45,000 individual accounts.
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Figure A14: Informational circulating poster for my Princeton Visual Arts undergraduate senior thesis titled CAUSTICS. Typeset in AVER-
AGE, SEATTLE, NAPLES, LAS PIEDRAS, I-95, and CORNWALL. February 2019.
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Figure A15: Vinyl wall text introducing CAUSTICS, my undergraduate senior thesis show for Princeton’s Visual Arts department. Typeset in
NAPLES. February 2019.
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Figure A16: Vinyl wall text defining CAUSTICS, a computer graphics term to describe a particular manifestation of light and namesake of
my undergraduate senior thesis show for Princeton’s Visual Arts department. Typeset in NAPLES. February 2019.
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Figure A17: Circulating poster for “Final Runnings Before the After”—an end-of-year show of seniors’ work in Princeton’s Visual Arts
Department. Typeset in PRINCETON. April 2019.

32



Figure A18: VIS logo displayed outside 185 Nassau. Photo courtesy of Jonathan Zong and his exploration with the Nikon COOLPIX 885.
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